Vyšlo v týdeníku CHIPweek č. 40/96, 1. října 1996
Vytištěno z adresy: http://www.earchiv.cz/a96/a640k150.php3

Přenosová rychlost

V závěru minulého dílu jsme dospěli k představě tzv. přenosové rychlosti. Jde o veličinu, která již poměrně věrně vystihuje schopnost určité konkrétní cesty přenášet data. Dnes si pojem přenosové rychlosti upřesníme, ukážeme si jaká omezení nám v praxi brání zvyšovat přenosovou rychlost tak, jak bychom mohli chtít.

Nejprve se ale znovu vraťme k závěru minulého dílu, ve kterém jsme dospěli k velmi důležitému závěru: tzv. modulační rychlost, měřená v Baudech a vyjadřující počet změn přenášeného signálu za jednotku času, nám ještě neříká nic o tom, kolik bitů je tímto signálem přenášeno. Naproti tomu přenosová rychlost, měřená v bitech za sekundu, nám říká kolik datových bitů je možné přenést za časovou jednotku, a naopak nevypovídá nic o způsobu jakým se toho dosahuje, neboli o četnosti změn přenášeného signálu. Mezi oběma veličinami přitom zdaleka nemusí platit rovnost - pokud se na vyjádření jednoho datového bitu „spotřebují" dvě změny přenášeného signálu (což je dáno použitým způsobem kódování jednotlivých bitů), pak přenosová rychlost vychází číselně poloviční oproti rychlosti modulační. Naopak, pokud jedna změna přenášeného signálu je změnou mezi čtyřmi možnými stavy, pak každá takováto změna může reprezentovat hned dva datové bity, a přenosová rychlost bude tudíž dvojnásobná oproti rychlosti přenosové. Obě rychlosti se přitom číselně rovnají pouze v případě, kdy je přenášený signál pouze dvoustavový, a každá jeho změna tak reprezentuje jeden jediný datový bit. Obecně pak platí vztah, který jsme si již také uvedli v závěru minulého dílu:

vpřenosová=vmodulační * log2(n)
kde n je počet vzájemně rozlišitelných stavů, které může přenášený signál nabývat.

Rozdíl mezi modulační a přenosovou rychlostí je nejmarkantnější u dnešních telefonních modemů. Ty totiž používají často dosti složité a komplikované metody modulace a kódování, díky tomu dokáží pracovat s relativně velkým počtem možných stavů přenášeného signálu, a svých přenosových rychlostí tudíž dosahují i při relativně nízkých modulačních rychlostech. Na druhou stranu jim jiné řešení nezbývá, protože mají k dispozici přenosový kanál s pevně danou šířkou přenosového pásma (300 až 3400 Hz, neboli 3,1 kHz), a podle Nyquistova kritéria (viz minule) na něm nemá smysl používat vyšší modulační rychlost než 6200 Baudů (tj. číselně dvojnásobnou oproti šířce pásma). V praxi jsou ale stejně používány ještě nižší modulační rychlosti, jak ukazuje dnešní tabulka. Z ní vidíme, že například modem s přenosovou rychlostí 14,4 kilobitů za sekundu pracuje se signálem, který se mění 2400-krát za sekundu (tj. má modulační rychlost 2400 Bd), přičemž tento signál může nabývat celkem n=26neboli 64 různých hodnot, a jedna změna tohoto signálu tudíž reprezentuje šest bitů.

A ještě jednu poznámku: kdyby vám někdo nabízel modem s přenosovou rychlostí například 2400 Baudů, obraťte se k němu zády. Plete si totiž hrušky a jablka.

Přenosová rychlost,
v bitech za sekundu
Modulační rychlost, v Baudech n - počet rozlišovaných stavů přenášeného signálu log2(n) - počet bitů, reprezentovaných jednou změnou přenášeného signálu označení přenosového standardu
2400 600 16 4 V.22bis
9600 2400 16 4 V.32
14400 2400 64 6 V.32bis
28800 2400-3200 512 9 V.34

Shannonův teorém

Zamysleme se nyní nad jednou velmi důležitou otázkou, která je zvláště aktuální u komutovaných (vytáčených) linek veřejné telefonní sítě: máme-li k dispozici určitou přenosovou cestu s jejími konkrétními a neměnnými obvodovými vlastnostmi, můžeme na ní dosáhnout libovolně vysoké přenosové rychlosti? Neboli, řečeno jinými slovy: budeme-li zdokonalovat technickou stránku přenosu a díky tomu zvyšovat přenosovou rychlost na určité přenosové cestě, budeme to moci dělat libovolně dlouho, nebo někde narazíme na nějakou z principu nepřekonatelnou bariéru? Nebo ještě jinak: když dnes existují modemy pro komutované linky veřejné telefonní sítě pracující s přenosovou rychlostí 28,8 kilobitů za sekundu, má smysl ještě chvíli počkat, až se na trhu objeví třeba modemy s rychlostí 64 kbps, 128 kbps apod.?

Odpověď začneme hledat vzorečcích a vztazích, které jsme si již dříve naznačili: jestliže maximální modulační rychlost je podle Nyqistova kritéria dvojnásobná oproti dostupné šířce přenosového pásma, a tato šířka přenosového pásma je pro danou přenosovou cestu fixována (je neměnná), pak z toho jednoduše vyplývá, že modulační rychlost nelze libovolně dlouho zvyšovat (a její maximální hodnota je také pevně dána). Jestliže přenosová rychlost závisí na modulační rychlosti podle dnes již jednou uvedeného vzorečku

vpřenosová=vmodulační * log2(n)

pak poslední možností pro zvyšování přenosové rychlosti je zvyšování parametru n, neboli zvyšování počtu rozlišovaných stavů přenášeného signálu. Výsledná přenosová rychlost by při lineárním zvyšováním n sice rostla pomaleji (logaritmicky), ale přesto bychom se při dostatečně vysoké hodnotě n mohli dostat s přenosovou rychlostí tak vysoko, jak potřebujeme.

Podívejme se ale na tuto možnost nejprve obyčejným „selským rozumem": budeme-li zvyšovat počet možných stavů přenášeného signálu, bude čím dál tím těžší je správně rozpoznat, resp. rozlišit od sebe. Intuitivně je tedy vcelku zřejmé, že něco takového nemůžeme dělat libovolně dlouho, ale že dříve či později narazíme na mez, za kterou už příjemce nebude schopen dostatečně přesně rozlišit stavy přijímaného signálu.

Zajímavou otázkou ovšem je, zda tato mez je dána našimi momentálními schopnostmi, resp. dokonalostí přenosové techniky a je možné očekávat její postupné posouvání, nebo zda jde o mez závislou na něčem jiném, co nemá s dokonalostí dostupné techniky nic společného (a co se tudíž nemusí posunout ani při sebedokonalejší technice).

Odpověď je (bohužel) taková, že zmíněná hranice je principiálního charakteru, a je nezávislá na dokonalosti naší techniky a technologie. Jinými slovy: i kdyby se výrobci modemů snažili sebevíce, přes onu magickou hranici se nikdy nedostanou.

Ale kde ona hranice leží? Tím, kdo tuto hranici nalezl (v roce 1948), byl zakladatel moderní teorie informace, pan Claude Shannon. Ten totiž zjistil, že maximální dosažitelná přenosová rychlost závisí jednak na dostupné šířce přenosového pásma (což je ihned zřejmé), ale pak už jen na „kvalitě" přenášeného signálu, vyjádřené tím jak dobře jej lze odlišit od nepříznivých vlivů, zejména všudypřítomného šumu. Konkrétní vzoreček závislosti přenosové rychlosti na uvedených veličinách, označovaný také jako tzv. Shannonův teorém, je následující:

maximální vpřenosová=šířka pásma * log2(1 + signál/šum)

Přitom poměr „signál/šum" (též: odstup signálu od šumu) je veličina, která je opět dána reálnými obvodovými vlastnostmi konkrétní přenosové cesty, a v praxi většinou není možné ji výrazněji ovlivnit (vyjadřuje totiž míru toho, jak se do „užitečného" signálu přimíchávají jiné signály rušivého charakteru). Například kvalitní komutovaná linka analogové veřejné telefonní sítě dosahuje odstupu signál/šum 1000:1. Dosazením této hodnoty do Shannonova vzorečku (spolu s šířkou přenosového pásma 3,1 kHz) nám vyjde, že maximální dosažitelná přenosová rychlost na běžných komutovaných linkách veřejné telefonní sítě je kolem 30 000 bitů za sekundu!!

Kupte si perpetuum mobile!

Uvědomme si dobře, co právě vyslovené tvrzení znamená: Shannonův teorém je zcela nezávislý na technické dokonalosti - nenajdete v něm ani vliv použité modulace, ani vliv použitého kódování. To ale znamená, že sebedokonalejší technika přenosu dat nemůže při pevně dané šířce pásma a kvalitě přenosu (dané odstupem signálu od šumu) překročit mez danou Shannonovým teorémem. Snahy překonat tuto mez pak mají stejnou šanci na úspěch, jako snahy sestrojit perpetuum mobile.

Jaká je ale současná praxe v oblasti telefonních modemů pro komutované linky veřejné telefonní sítě? Dnes již existují (a jsou běžně k dostání) modemy pro přenosovou rychlost 28,8 kbps, které se teoretické hranici vyplývající z Shannonova teorému velmi blíží. Svědčí to mimo jiné i o vyspělosti naší současné techniky.

Obrázek 1.
Na trhu však již dnes jsou i modemy, dosahující přenosové rychlosti 33 kilobitů, což je nad hranicí danou Shannonovým teorémem (a nejde přitom o podvod). Podařilo se tedy zkonstruovat perpetuum mobile, resp. vyvrátit Shannonův teorém?

Nikoli, to skutečně nejde. Zmíněné modemy pro 33 kbps plně respektují Shannonův teorém, neboť používají o něco větší šířku pásma než původních 3,1 kHz. Dokáží totiž využít i okrajové části přenosového spektra běžných komutovaných linek veřejné telefonní sítě (viz obrázek), které již mají natolik špatné přenosové vlastnosti, že pro ostatní modemy nejsou použitelné - vlastně si tím dokáží „roztáhnout" původní přenosové pásmo o šířce 3,1 kHz.