Vyšlo v týdeníku CHIPweek č. 38/96, 17. září 1996
Vytištěno z adresy: http://www.earchiv.cz/a96/a638k150.php3

Vliv šířky pásma

Jak jsme si již naznačili minule, míra schopnosti přenášet data závisí u všech přenosových cest na šířce přenosového pásma, neboli na velikostí intervalu mezi nejnižší a nejvyšší frekvencí, které je daná přenosová cesta schopna přenést v dostatečné kvalitě. Jaká ale je konkrétní závislost mezi šířkou pásma a schopností přenášet data, a jaké další faktory zde ještě vstupují do hry?

Hledání odpovědi na otázku v dnešním podtitulku začneme malou úvahou, která nám pomůže pochopit některé velmi důležité skutečnosti a souvislosti. Ona úvaha je následující: co kdybychom skrz určitou přenosovou cestu zkoušeli přenášet elektrický signál takovým způsobem, že bychom vždy po určitou dobu (i třeba hodně krátkou, například tisícinu sekundy) neměnili úroveň napětí tohoto signálu, pak jej co nejrychleji změnili, a zase po zmíněnou dobu vysílali beze změny a vše opakovali dokola. Kdyby příjemce o našem počínání věděl, mohl by ve zmíněných časových intervalech kdy se signál nemění změřit hodnotu jeho napětí, a z té si pak odvodit co jsme mu vlastně vysílali, resp. zrekonstruovat původně vysílaný signál. Fakticky by to znamenalo, že bychom se snažili přenášet signál ideálního obdélníkového průběhu, a například jeho vyšší úroveň by mohla reprezentovat logickou jedničku, a nižší úroveň logickou nulu. Pokud by příjemce dokázal správě rozpoznat naše „obdélníky", dokázal by si z nich odvodit jaká binární data mu posíláme.

Již z předchozího dílu ale víme, že skutečné přenosové cesty nejsou nikdy ideální, ale že mají určité reálné obvodové vlastnosti, které více či méně „kazí" přenášený signál. I když pak budeme z jedné strany vysílat ideální obdélníky, příjemce vždy dostane něco jiného, „ne-ideálního". Zkusme si nejprve ukázat, jak souvisí šířka přenosového pásma s mírou „pokažení" našich ideálních obdélníčků.

Abychom si tuto souvislost mohli názorně vysvětlit, vzpomeneme si ještě na jeden důležitý poznatek z minulého dílu - totiž na konstatování, že prakticky libovolný signál je možné namodelovat (složit) ze signálů harmonických (tj. pravidelně se měnících signálů se sinusovým či kosinusovým průběhem).

Obrázek 1.
Tedy nahradit jej součtem celé řady harmonických signálů (obecně jich bude nekonečně mnoho, jejich frekvence budou růst skokovitě jako celistvé násobky určité výchozí hodnoty, a dohromady budou tvořit tzv. Fourierovu řadu, resp. Fourierův rozvoj). Tento fakt, na který přišel již v 19. století francouzský matematik Jean-Baptiste Fourier, nám pomůže následovně: nevíme sice, jaký vliv má šířka pásma na náš obdélníkový signál, ale víme jaký vliv má na zmíněné harmonické signály - ty, jejichž frekvence spadají do příslušného intervalu (šířky pásma), přenáší při našem intuitivním pohledu bez významnějšího zkreslení, zatímco ostatní harmonické signály (ležící mimo interval představující šířku přenosového pásma) nepropustí vůbec. Chceme-li se proto dozvědět, jak zapůsobí šířka přenosového pásma na náš obdélníkový impuls, musíme jej nejprve pomyslně nahradit jeho Fourierovým rozvojem, zjistit jaký vliv má omezená šířka přenosového pásma na jednotlivé složky tohoto rozvoje, a pak výsledný efekt zase „poskládat zpátky".

Obrázek 2.
Celou situaci názorně ukazují dnešní dva obrázky - čím větší bude šířka přenosového pásma, tím více harmonických složek skrz přenosovou cestu projde (viz první obrázek), a jejich zpětným „poskládáním" pak vznikne o to věrnější podoba původního obdélníkového signálu (viz druhý obrázek). Neboli: čím větší šířka pásma, tím kvalitnější a věrnější svému originálu bude přenesený signál.

Analogový a digitální přenos

Nás ovšem v tuto chvíli nezajímá ani tak signál samotný, jako spíše to co reprezentuje. Pokud jsme obdélníkové impulsy generovali podle určité posloupnosti bitů, pak jistě budeme požadovat, aby příjemce dokázal z přijatého signálu zpětně odvodit, jaké bity to byly. Zde přitom narážíme na základní rozdíl mezi analogovým přenosem a přenosem digitálním - v případě analogového přenosu bychom přenášeli určitou konkrétní hodnotu, podle které bychom nejspíše nastavili úroveň napětí přenášeného signálu, a pak bychom chtěli aby se cestou k příjemci tato hodnota moc nezměnila a příjemce ji dokázal změřit s přijatelně malou chybou. Nepodaří se mu to nikdy úplně přesně, protože kvůli reálným obvodovým vlastnostem přenosových cest něco takového prostě není možné. Nám zde ale jde o přenos digitální. Tedy o to, aby příjemce dokázal podle přijímaného signálu rozlišit jednu z tolika alternativ, které připadají v úvahu - a které jsme v tomto konkrétním případě reprezentovali úrovní napětí přenášeného signálu. Pokud jsme se s příjemcem dohodli například na tom, že alternativy budou právě dvě, a jedna z nich bude reprezentována napětím nižším než 0,1 V (například) a druhá napětím vyšším, pak nám může být vcelku jedno, že během přenosu došlo v určitém okamžiku vlivem útlumu k poklesu napětí ze 3 voltů na 2 (například). Pokud to zůstane v toleranci, která rozlišuje obě alternativy, dokáže příjemce správně rozpoznat co jsme měli na mysli a s absolutní přesností zrekonstruovat přenášený údaj. Už chápete, v čem je skutečný rozdíl mezi analogovým a digitálním přenosem? V interpretaci! V obou případech protéká přenosovou cestou signál o určitém napětí, ale jednou nám jde o konkrétní hodnotu tohoto napětí (a ta je vždy zatížena určitou chybou), zatímco v druhém případě nám jde o to, abychom se podle hodnoty signálu dokázali správně rozhodnout (o tom, která z možných variant nastala).

Podívejme se na celou věc ještě z jiného pohledu: analogový přenos není ideální. Je vždy zatížen určitou chybou, a čím více budeme chtít tuto chybu zmenšovat, tím technicky (i finančně) náročnější bude toho dosáhnout. Naproti tomu digitální přenos může být ideální a absolutní v tom smyslu, že příjemce dokáže přenášená (digitální) data zrekonstruovat naprosto přesně, a to i v případě, že byla přenášena prostřednictvím analogového signálu který se po cestě mohl i dosti „pokazit". Podstatné a důležité je pouze to, aby příjemce dokázal i z deformovaného signálu správně rozpoznat, co má reprezentovat.

Nyquistovo kritérium

Jak jsme si již odvodili výše, má na „pokažení" signálu vliv především šířka přenosového pásma, skrz které byl signál přenášen. Ale do jaké míry? Existuje nějaký vztah, který by dokázal určit kdy už bude přenášený signál natolik „pokažený" že z něj nepůjde věrohodně poznat, co měl reprezentovat? Navíc vztah obecný, který by se netýkal jen jednoho specifického případu, jakým jsou námi použité obdélníkové impulsy?

Takovýto vztah skutečně existuje, a přišel na něj již v roce 1924 pan Henry Nyquist. Zjistil, že když se jakýkoli signál prožene skrz pásmovou propusť (filtr) šířky H (která ořeže všechny složky o frekvenci vyšší než H), pak je nutné snímat stav přijímaného signálu alespoň dvojnásobnou rychlostí (neboli s frekvencí 2H), aby z něj bylo „vyždímáno" vše, co může reprezentovat. Současně s tím pan Nyquist přišel i na to, že snímat stav přijímaného signálu rychleji nemá smysl, protože veškerou další informaci (kterou mohly přispět vyšší harmonické složky) již odřezala zmíněná pásmová propusť.

Závěr z tohoto zjištění (kterému se také říká Nyquistovo kritérium) je následující: je-li k dispozici přenosová cesta s šířkou pásma H, a je-li touto přenosovou cestou přenášen jakýkoli signál který některým svým parametrem rozlišuje mezi několika možnými alternativami, pak nemá smysl střídat tyto alternativy rychleji než s frekvencí 2H (neboli 2H-krát za sekundu). Například je-li k dispozici přenosový kanál o šířce pásma 4000H, pak nemá smysl „hýbat s ním" rychleji než 8000x za sekundu.

Je ale Nyquistovo kritérium odpovědí na otázku v podtitulku dnešního dílu? Říká nám, kolik bitů, kilobitů či megabitů můžeme přenést po přenosové cestě s určitou šířkou přenosového pásma? Pozor, ještě ne! Budeme tedy muset pokračovat příště.